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SUMMARY 

The present paper discusses the simulation of the optical characteristics of 
plane parallel isotropic media under special conditions where the general solutions 
either degenerate or else may be considerably simplified. The first case is mainly that 
of a scattering medium with vanishing absorbance. The second one assumes high 
scattering and medium absorbance. In this latter case both transmittance and re- 
flectance may be approximated by an e -COIW 1/K function. Other sections consider 
the determination of the basic constants of the solutions by optical measurements on 
the blank medium and the character of the optical noise in transmittance and re- 
flectance measurements. Reflectance is shown to bc less susceptible to c+ic.al noise 
than transmittance. 

I NTRUDUCTION 

In a recent paper’ the authors discussed the electrical modelling of the optical 
behavior of plane parallel scattering media, The results derived were completely 
general and covered the whole range of media to which the KUBDLKA AND MUNK 

theory2 may be applied. There are, however, certain particular situations where the 
solutions obtained may be much simplified and which might, therefore, merit a more 
detailed consideration; several of these are considered in this paper. 

It has been shown1 that the transmittance A T and reflectance AI~ of a medium 
can be expressed in terms of the characteristic impedance c,,, the attenuation constant 
y and the reflection coefficient e of a 3-terminal electrical model circuit. The meaning 
of these terms wxs briefly described in ref. I. They will not be repeated here. The 
relations found were : 

A y’ = 
e-.y 

(f - COY = 27)(I) 

I - p2.e-27' v(o) -+ i(o) 
0) 

I - e-BY 
‘4 If = - 9 - 

v(o) - 2'(o) 

1 - 92.@? = 7!(O) -I- i(o) 
(2) 
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n 
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v(1) ZL 

AT 
Fig. I. General moclel cliagram. M = Model; Rc = I = current measuring resistor ; %L = I = 
load resistor; E = input generator with voltage n. 

The symbols v and i on the right-hand side of eqns. I and z designate voltage and 
current, respectively, of the electrical model; the numbers in brackets refer to the 
terminal at which these values are’observed, o marking the input and I the output 
(see Fig. I). 

The parameters co, y, and e are related to each other and to the coefficient of 
scattering S and of absorbance K of the medium by the following relationships: 

to = 

e = 

Y = 

For Co and 

V 2s + K 
K 

I - 6.0 

I + 6.0 

2/(r((zs+~~))=I~.~“=I( ; -(-$ 

e apply the limitations : 

(3) 

(4) 

THE DEGENERATE CASE WITH EITHER s OR K ---t 0 

A special situation arises if one of the variables S or K vanishes. In this case our 
model equations degenerate and cannot be applied immediately. The case of either 
S or K tending towards infinity is of no practical importance and need not be con- 
sidered here. 

Fig. 2. Basic cliagram of transmission lint moclcl. I 

If I< tends to zero, the basic expressions (I) and (2) become meaningless. It is 
easy, however, to obtain the desired result by using the basic transmission line model 
illustrated in Fig. 2 (the derivation of this was discussed in ref. I) and setting I< = o. 
What is obtained is a simple voltage divider network (see Fig. 3b). 
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fig. 3. (ZL) Equivalent circuit for transmission nnd rcflcction with I< = o. (lo) Rloclcl of n clegcncratc 
cast with I\;’ = 0. 

Using eqns. I and 2 we find the transmittance and reflectance for this case from 
the model circuit in Fig. 3b which represents a degenerate line. Since scattering alone 
only changes the direction of flow of the radiant energy without producing any losses, 
the sum of transmittance and reflectance euals I (ref. 3). 

A T(O) = I ; s 

A n(o) = 1 - Afp(o) = I ; s (5) 

These particular relationships are modelled by the circuit shown in Fig. 3a. 
The second limiting case with S = o can easily be determined from the basic 

equations, since in this case CO becomes I and 9 = o. We obtain an attenuating pad 
with attenuation y = K and characteristic impedance CO = I, This case corresponds 
of course to the ideal relations prescribed by Beer’s Law. It can probably best be 
modeled by a bridged T-network (see Fig. 4). Reflection is zero, since the impedance 

eK-1 

/ 
1 1 

ZL = 1 

Fig. 4, 13ridgctl I.‘-model for case S = 0: C = I ; y = IOg CII’ = .I<\‘. 

of the model is constant (unity) and matched to the load at all values of K. Espressed 
in optical terms it is zero, because no backscatter occurs. The transmission A vq is 
obviously e-J<. 

THE NEARLY DEGENERATE CASE WITH 0 < I< < I 

When a finite but very small amount of absorbance I< << I is present on the 
medium, the equivalent transmission line ceases to be degenerate. The resulting 
decrement in transmittance dAy or reflectance dAlc can of course then ,be found 
from the basic eqns. I and 2. The results may be read from the graphs of A 2~’ = 3A T/~K 
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Fig. 5, Sensitivity curves for transmittance and rdicctancc nt cxtrcmc \~dues of S. (A) A 97’ (S = o) ; 
(B) AT' (S = 20); (C) An' (S = I); (D) AR (S = 20). 

and AR' = aAn/aK, which are shown for two extreme values of S in Fig. 5. These 
curties were calculated from eqns. ‘I and 2. 

For small increments in absorbance, AK, both transmittance and reflectance 
can be approximated by a linear dependence, 

AAT 21 A+*AK 
AAR N AR’ *AK 02 

The useful signal obtained during actual measurement is proportional to ,4Ap 
or AAn. AT’ and An’ therefore characterise the absolute sensitivity of the method. 
From the graphs shown in Fig. 5 it may be seen that the largest value of the derivative 
of both transmittance and reflectance occurs at small values of K. With respect to S 
the highest sensitivity is obtained in transmittance measurements, if S - o, that is 
if Beer’s Law is valid. The smallest absolute change and thus the smallest value of 
useful signal for a given value of I< is encountered when the medium is strongly 
scattering (i.e., S = 20). Curves of A T’ = f(K) for intermediate values of S will fill 
the space between these two extreme curves. 

The sensitivity of reflectance measurements lies between the extreme values 
for transmittance. Quite surprisingly, however, the curves for different values of the 
coefficient of scattering intersect, so that the value of S giving the best sensitivity 
depends upon the absorbance I< of the medium. 

Instead of the absolute sensitivity it may sometimes be more convenient to 
consider the relative sensitivity A’(K)/A (K) with AK = 0. For small values of I< the 
relative sensitivity increases with increasing scattering, whilst at ‘larger values of K 
the opposite condition prevails. 

THE REFLECTANCE OF MEDIA WITH MEDIUM TO LOW TRANSMITTANCE 

A particular case, frequently encountered in technical application, is a medium 
with relatively strong scattering and a. certain minimum of absorbance. This minimum 
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value of I< is dependent upon the coefficient of scattering S and may be expressed as 
the requirement : 

Expression (2) 

e--2Y << 1 
AR"@ 

Most practical 

d{ K (2s + Z<)} 21 42szi’ 

may now be simplified to: 

(7) 

(8) 

measurements using reflectance spectroscopy are based upon this 
approximation. Its accuracy increases with increasing values of y and decreasing 
values of e2. Inspection of eqns. 3 reveals that the reflection factor Q is solely a function 
of the ratio K/S. The inverse expression ZC/S = f(e) is usually called the remission 
function*. It can be obtained by solving the equations defining Q for the variable u = 
K/S. 

+ (: ---)2 = 2 ; 2c 
_ 

ac = -Q Ge ( + de)2 (9) 

A closer examination of eqn. 9 reveals that on a logarithmic scale for u the right-hand 
side is symmetrical to the axis ( Q 1 = I. A graph of ti = f(e) is shown in Fig. 6. From 
this figure it is evident that in order to obtain good accuracy, the range of e over which 
reflectance measurements are to be made, should be restricted ,to approximately 
--rQ5- 0.3, or ZC/S < I. At very small values of Z</S it is necessary to be care- 

$= f (e) 

e- 3 -1 -0.9 -0.8 -0.7 

1Gg. 0. ‘I’hc remission function N/S = IQ). 

l Most frcqucntly tllc remission function is cletiuccl in terms of R = -_o. Set also ref. ‘1. 
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ful since y may become too small for the approximation to be valid, ,in which case 
considerable errors will ensue. 

In practice the approximate value for AR may be used for all media with an 
optical density above about one unit. To illustrate this, the following argument may 
be used. 

Optical density is defined as the decimal logarithm of AIT-1 or 2.3 times its 
natural logarithm. Inspection of eqn. I, however, shows that the factor (I-$)/ 
(I-e2.e -2~) can only appreciably contribute to the optical density when I-$ is very 
small. E.g., for Q = - 0.9 the smallest value of this factor is evidently 0.19, which is 
approximately 0.7 optical density units. For e = -0.9 the value of K/S (read from 
Fig. 6) is, however, so small that it will only infrequently be encountered in actual 
practice. This means that a medium with an optical density D larger than I will 
nearly always have a y value of at least (D -0.7) x 2.3. For optical density values 
D > I we therefore nearly always find e-Q’ < I. 

AN APPROXIMATE EXPRESSION FOR THE REFLECTION FACTOR 

It was pointed out above that for reasonable accuracy the value of e should be 
below -0.35, or zc 5 I. It will now be shown that for this range, which is of consider- 
able practical importance, the remission function zc == f(e) can be closely approximated 
by an exponential function. In order to do this we write: 

zc = zqe 

I 
8 

- co 

=,I+T” = 

4 - 2/b + s2) 

(I + 70 + cz”) 

log 8 = hz cs - do + s2>l - log [4 + IA1 5 q2>1 

However 

(10) 

k - do + cz”)l cs + 30 + (22>1 = --I 

therefore 

1% t-!I + AA1 + q2)l = - ~ofiz 1 I37 - 2/G + P)l I 
loi2 I e ) = - 2 1% cs + 2/e + cY2)l 

The right-hand side of this relation can be expanded into a power seriesb: 

w 

1% k + A/k2 -I- 111 = !7 - &I3 -I- 2f;35 Q” - 2J;3;y7 4’ + - (Id 

The series expansion in eqn. 12 is valid for 42 < I. At the other end of the scale, that 
is for (i > I, another expansion may be applied. 

log cq + 2/(q2 + I)J - 108 q + &- - 2- - 1.3 
P 

.I+ 
2’4’4 CJ4 

+ 
1’3’5 I 

.-- - 
2 +4*6*6 QO 
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There is a well known theorem about the error committed in terminating a uniformly 
convergent power series with terms of alternating sign. This theorem states that the 
error committed in this way is less in magnitude than the first omitted term. Applying 
this to series (12), we find that the first term in eqn. 12 is thus an adequate represen- 
tation of the remission function provided the next term is reasonably smaller (e.g., 
less than IO %). This leads to the approximation 

log #$B z 2q = V 2IC 
7 

If 43 = -?- s 10% 
6q 12 

zc s 1.2, that is Q s - 0.23) 

./ 2K 

- e- 
-k S 

e Ly. (14) 
. . 

As already mentioned, the range for which this approximation is valid coincides 
closely with the range most suitable for reflectance spectroscopy. 

For very large values of zt, series (13) can be used as a basis for a simplified 
approximate expression. Allowing an error of similar magnitude, we obtain : 

log c-’ II - 2 log 2q = - log 221 

I< I $6=-E- 
S 2e 

If 
I I 

442 * log 2q = 2c log 22t ;5 10% 

that is for zc 2 4.5 (15) 

In other words, for very large values of the ratio K/S, that is for media with 
little scattering and high absorbance, the remission function becomes inversely 
proport ion al t 0.2X. 

THE TRANSMITTANCE OF MEDIA WITH STRONG 

SORBANCE 

SCATTERING AND INTERMEDIATE An- 

The considerations in this section apply to the case where e2 << I ; a value of 
1 Q 1 5 0.4 will in general be adequate. From Fig. 6 it may be seen that this corresponds 
to 1Cl.S 2 0.4, and that beyond this value e2 changes only relatively slowly with I<. 
Eqn. I thus reduces to : 

AX 21 e-y ( -g- 2 0.4) (16) 

In the range 
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we may make the further approximation 

resulting in 

AT=e- V asx (17) 

Approximation (17) is appropriate principally for strong scattering and intermediate 
values of absorbance (e.g. paper). A comparison with expression (14) shows that in 
both cases the logarithm of the transfer function is proportional to dK, The range in 
which eqn. 14 may be applied includes that for espression (x7), which is, however, 
somewhat more restricted towards smaller values of K/S. 

DETERMINATION OF THE OPTICAL CONSTANTS OF THE MEDIUM 

Before the transfer eqns. I and z can be solved for a particular application or 
before they can be simulated on a model arrangement, the optical constants of the 
blank (unstained) medium must first be determined by optical measurements. In 
general two independent measurements will be required to determine S and K. In 
order to eliminate statistical variations in the values of these parameters, however, 
it may frequently be desirable to perform two series of such measurements. 

As described earlier, the reflectance of a layer (or multiple layers) of a medium 
with a sufficiently high optical density is equal to e. Care has to be taken to exclude 
the surface component of the reflected light by using for example polarised light 
filters4. Using eqn. g or Fig. 6 the ratio K/S can be determined from the measured value 
of Q. The second measurement may be the transmittance of the same medium. Intro- 
ducing the measured value of e intoexpression (I), the corresponding value of e-7 (and 
from that of course y) can easily be determined. Provided e--2? is small enough, the 
simplified results are : 

A&4 
Y = 1% I _  

e2 

1S-Q. A I’ 
K=$= I_e l log I_ez 

S = $ (pO - I) * 1% I 
AT 

- e2 

(18) 

(19) 

If the approximations (14) and (17) 
ther simplified to yield : 

loge*log AT =‘22-- 

log A T/log e = S 

both hold, the relations above can be fur- 

(20) 

On occasions it may be preferable to measure just reflectance or else trans- 
mittance. In these cases a chromogen with known increments in absorbance is applied 
to the medium and from the values of the transfer for K and K + AK the values 
S and K may be calculated. The calculation is, of course, easier to perform if one of the 
approximations described in eqns, 8, 14 or 16 can be applied. If a general purpose 
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model such as the one described in ref. I is available, the calculation may be replaced 
by successive adjustment of the model parameters on a trial and error basis, until the 
values of ~4 R and ~4. T measured on the model agree with the optical values obtained 
from the medium. This procedure is very much facilitated if the approximate values 
of S and K are known beforehand. 

Fluctuations in the basic parameters of the medium (variations in thickness, 
density, etc.) produce fluctuations in the transfer function, which for the purpose of 
measuring changes in absorbance are equivalent to the noise in a communication 
systcm”. 

As long as these fluctuations affect S and I< equally, we can consider them as 
a change AX in the effective thickness of the medium. co as a ratio value will in this 
case remain unchanged and so by the same token will Q. Only y will be affected and 
that in proportion to AX: 

Ay = y *AX (21) 

Turning back to eqns. I and 2 we find that AR is principally a function of e. Reflectance, 
therefore, does not change very much with variations in the optical thickness of the 
background medium. It is, however, sensitive to inhomogeneities in the medium, 
affecting Ii: and S to a different degree and therefore producing fluctuations in co and e 
as well as in y. In general, however, fluctuations of the first type seem to prevail, and 

as a consequence of this, reflectance measurements are relatively insensitive to optical 

noise, provided surface effects can be disregarded. 

AT, on the other hand, is influenced by fluctuations in the effective thickness 

of the medium. 

AA T 21 AT(o) *emA? = AT(o) l e-yod4y (24 

From eqn. 22 we see that for a given variation AX the change in transmittance pro- 
duced is proportional to the mean value of transmittance A T(o). In consequence of 
this, noise is produced which is basically multiplicative in nature. This is a fundamental 
difference from the predominantly additive noise in electrical systems. One important 
feature of multiplicative noise is that it can be largely suppressed by forming the 
ratio of two equally affected signals. Difference procedures, which would be the method 
of choice in additive systems, are less efficient in these cases. 

CONCLUSION 

Summarising the results obtained we arrive at the following conclusions: 

As previously showni, a resistive transmission line is a convenient model for 
studying, in general, the optical properties of thin media that can he adequately 
described by the KUBELKA AND MUNK theory. For certain special cases, that is for 

some limited ranges of optical parameters, it can be shown that the general solutions 

may be very much simplified. Circuit arrangements to model these expressions will 

be described in a future publication. 

Reflectance measurements are to be recommended mainly when the medium 

in question has high scattering power and low to medium absorption at high optical 

density. In this case such measurements are less susceptible to optical noise than is the 

case for transmission measurements. 
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Transmission measurements can be used in all cases provided the optical density 
is not too high and that the output signal is larger in amplitude than the opti- 
cal equivalent of the electrical noise of the detector assembly. The optical noise in 
transmission measurements is essentially multiplicative and to reduce it, a double- 
beam arrangement with ratio forming at the output seems to be the best solution. 
The strictly exponential dependence of transmittance upon absorbance postulated 
by Beer’s Law represents a limiting case, which is attained only if the coefficient of 
scattering S tends towards zero. In the practically important case of a medium. with 
high scattering power, intermediate absorbance values and high optical density the 
law.of dependence of both transmittance and reflectance can be approximated by an 
e -Conet v JC function. 
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